
SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES

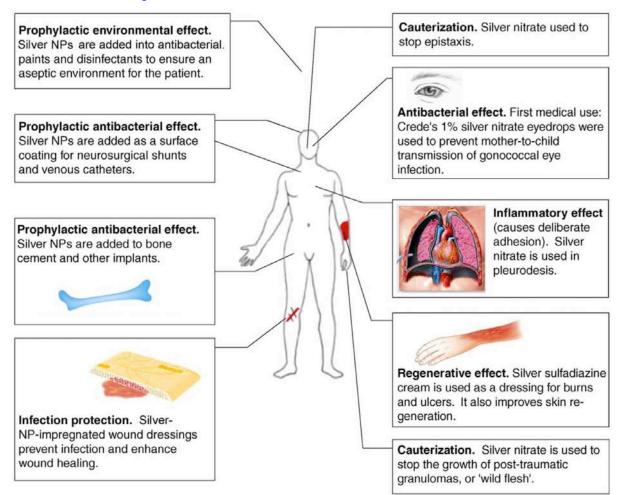
Lawrence Hall of Science, Spring 2013

Collaborative Lab Model

Due to the length and complexity of this lab, a collaborative model has been implemented, in which each disciplines has a specific role. An advantage of this collaborative model is that it helps introduce students to interdisciplinary research.

History of Silver

Silver has been used throughout history


- Greeks and Romans stored water in silver vessels
- 1800s: silver was used to treat ulcers
- 1880s: silver nitrate eye drops were given to newborns (now babies get antibiotic drops)
- 1920s: silver was used to manage wounds

Currently there are many products that use silver and silver nanoparticles

Uses of Silver and Silver Nanoparticles

Silver nanoparticles

Silver

Chaloupka et al., Trends in Biotechnology, 2010

TRENDS in Biotechnology

Other Uses for Silver Nanoparticles

Washing machines

Hair straighteners

□ Athletic clothing

Socks

http://www.samsung.com/sg/consumer/learningresources/silvernano/refigerator.html http://www.diabeticsock.com/products/Seamfree_Silver_Diabetic_Socks-27-6.html http://www.conair.com/infiniti-nano-silver-by-conair-tourmaline-ceramic-1-straightener-p-563-1_73_12.html

Collaborative Lab Model

Chemistry Lab: Synthesizes silver nanoparticles

Silver Nanoparticle Synthesis

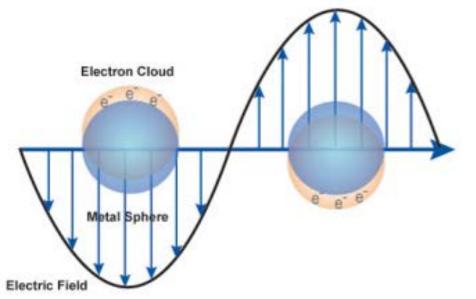
- Metallic nanoparticles can be synthesized through many methods
- The two most popular methods for synthesizing silver nanoparticles (Ag NP) via chemical reduction are:
 Turkevich method (1951): Silver reduced by trisodium citrate
 - Brust method (1994): Silver reduced by sodium borohydride
- In this lab we're going to use the Turkevich method, since the materials are less hazardous

Turkevich Method for Ag NP Synthesis

 Boil 60mL of a 1mM silver nitrate solution, covered with a watch glass on a hot plate
Stir solution with a magnetic stir bar

- Once boiling, add 6mL of 10mM trisodium citrate dropwise, about 1 drop per second
- Replace watch glass
- Wait for solution to change to a light golden color
 - Carefully remove beaker from hot plate and let solution cool

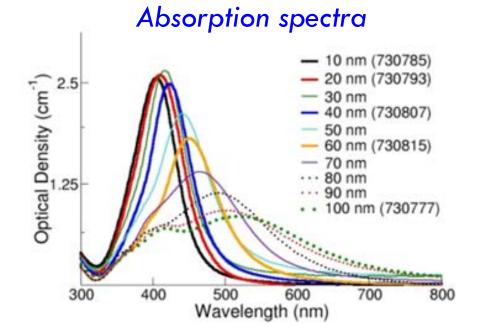
Reason for Color Change During Synthesis


At the macroscale, silver always looks like silver

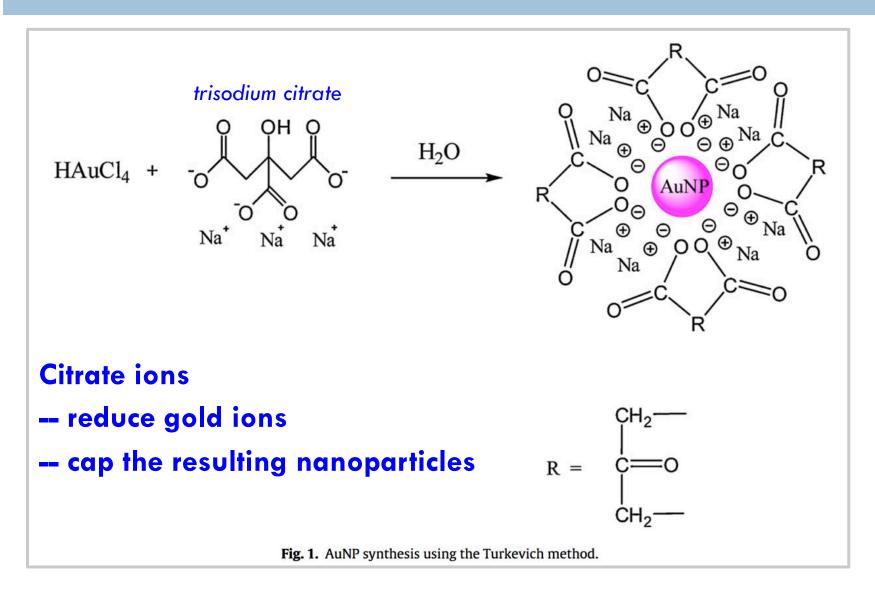
But solutions of silver nanoparticles can have many colors!

http://nanocomposix.com/products/silver/spheres http://commons.wikimedia.org/wiki/File:Silver-nugget.jpg http://www.sigmaaldrich.com/materials-science/nanomaterials/silver-nanoparticles.html

Surface Plasmon Resonance



- In the silver nanoparticles, electrons oscillate collectively
- These oscillations affect how light interacts with the nanoparticles
- The specific oscillations depend on the particles' size and shape, so particles of different sizes have different colors


http://nanocomposix.com/products/silver/spheres http://commons.wikimedia.org/wiki/File:Silver-nugget.jpg http://www.sigmaaldrich.com/materials-science/nanomaterials/silver-nanoparticles.html

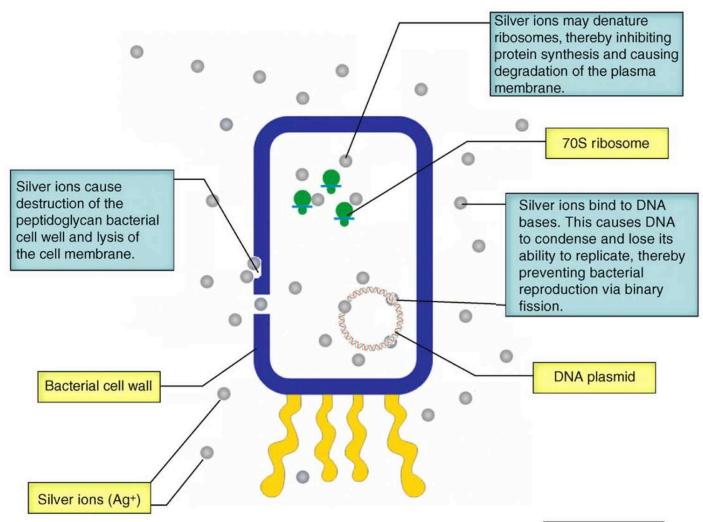
Color Change Indicates Particle Size

- Solution color gives an approximate idea of the particle size
- The color we see is basically an integration of the absorption spectra
- Nanoparticle size can be monitored more accurately by taking absorption spectra

Role of Citrate

Zhao, P., et al. "State of the art in gold nanoparticle synthesis." Coordination Chemistry Reviews 257 (2013), 638-665.

Collaborative Lab Model


Chemistry Lab: Synthesizes silver nanoparticles Provide synthesized nanoparticles

Students go to biology lab to explain synthesis process

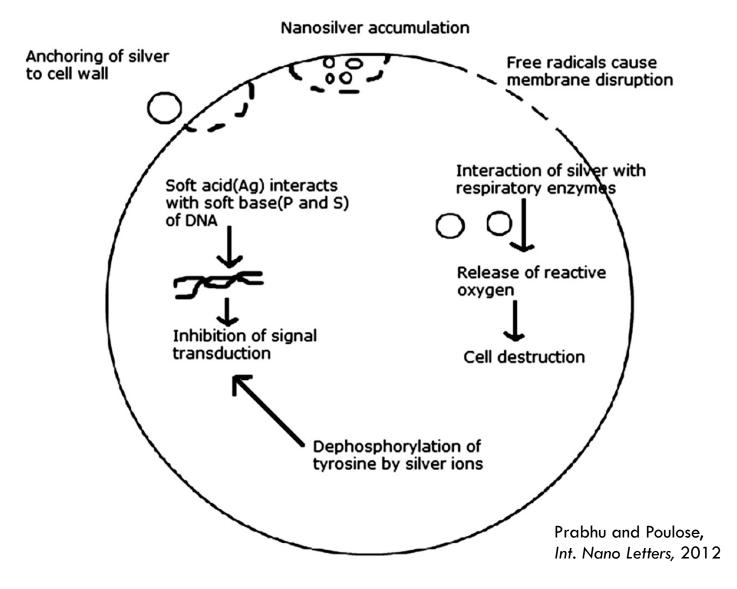
Students go to chemistry class to explain results of yeast testing

> **Biology Lab:** Tests anti-microbial properties of silver nanoparticles

How Silver Ions Kill Bacteria

TRENDS in Biotechnology

Chaloupka et al., Trends in Biotechnology, 2010


Silver Ions vs Silver Nanoparticles

 The antimicrobial properties of silver nanoparticles (Ag NPs) are less understood

Possible bactericidal mechanisms for Ag NPs include

- Cell uptake followed by disruption of both ATP production and DNA replication
- Cell membrane damage
- Generation of reactive oxygen species

How Silver Nanoparticles Kill Bacteria

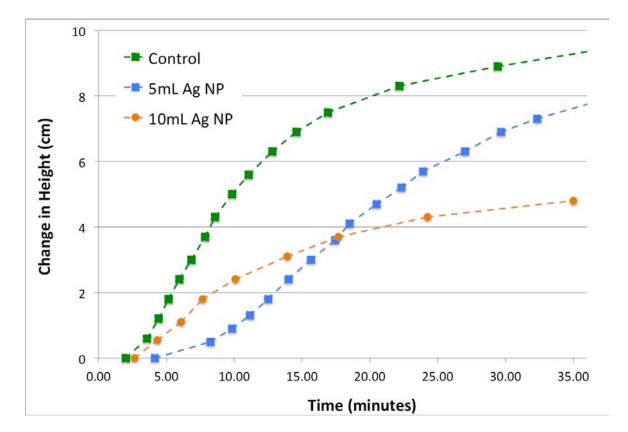
Yeast Fermentation

- The anti-microbial properties of the silver nanoparticles (Ag NP) can be tested by measuring how Ag NPs affect yeast respiration
- Yeast fermentation:

 $C_6H_{12}O_6 \rightarrow 2CO_2$ (gas) + 2 alcohol molecules

- If Ag NPs kill yeast, there will be fewer yeast undergoing respiration, so the CO₂ production will be lower
- The CO₂ produced can be measured in yeast fermentation tubes by tracking gas bubble height

Yeast Fermentation


- Draw horizontal lines on fermentation tubes, (makes it easier to record bubble height data)
- Measure appropriate chemicals into beakers and stir to mix
 control: water and yeast/molasses solution
 test: silver nanoparticles and yeast/molasses solution
- Pour mixtures from beakers into fermentation tubes, taking care to not get bubbles in the vertical portions
- Transfer fermentation tubes to a water bath (set to 50 °C)
- Monitor fermentation and record data

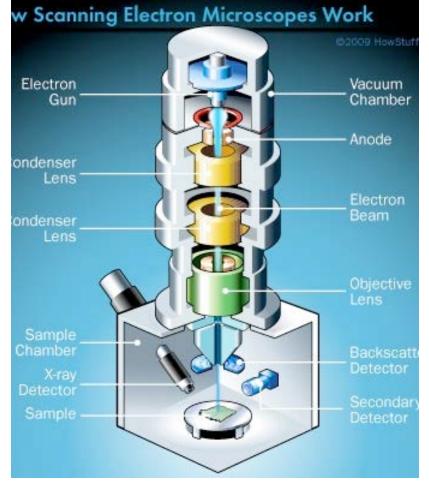
Sample Fermentation Data

	Silver nanoparticles	Water	Yeast/molasses solution
Control	0	20 mL	20 mL
5ml silver NPs	5 mL	5 mL	20 mL
10ml silver NPs	10 mL	10 mL	20 mL

Sample data collection table

Tube 1 (control)			
Line	Time		
start	1:41:30 PM		
0	1:43:45 PM		
1	1:45:35 PM		
2	1:48:05 PM		
3	1:52:25 PM		
4	1:54:55 PM		
5	1:58:06 PM		
6	1:59:15 PM		

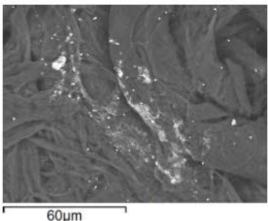
Collaborative Lab Model


Provides synthesized nanoparticles **Chemistry Lab:** Synthesizes silver nanoparticles Provides synthesized nanoparticles

Students go to biology lab to explain synthesis process

Engineering Lab: Characterizes silver nanoparticles with a scanning electron microscope Students go to chemistry class to explain results of yeast testing

> **Biology Lab:** Tests anti-microbial properties of silver nanoparticles


SEM Characterization

http://science.howstuffworks.com/scanning-electron-microscope2.htm

Use a Hitachi SEM (a TM3000) to characterize a filter paper soaked in silver nanoparticle solution

Sample SEM image

Considering Impacts of Technology

Values shape what technologies are developed and adopted.

Technologies affect social relationships.

http://nisenet.org/catalog/tools_guides/nano_society_training_materials

Societal and Ethical Implications of Nano Silver

Silver nanoparticles could affect individuals

Overdose of *macro* silver causes Argyria Safety of *nano* silver still unknown

Silver nanoparticles could also affect whole societies and ecosystems

Silver nanoparticles can inhibit many bacteria, including "good bacteria" Silver nanoparticles can prevent photosynthesis in algae

Nano Around the World

- Available from <u>http://www.nisenet.org/</u> <u>catalog/programs/</u> <u>nano_around_world</u>
- Participants reflect on the potential uses of nanotechnology as they trade technology cards
- Fun way to reflect on the impacts of many technologies, not just nanotechnology

References

- Turkevich, T., et al. "A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold." Discussions of the Faraday Society 1951, Vol. 11, 55-75.
- Brust, M., et al. "Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two phase Liquid-Liquid System." J. Chem. Soc., Chem. Commun. 1994, 801-802.
- To find more products that user nano silver, search this inventory of nanotechnology-based consumer products: <u>http://www.nanotechproject.org/inventories/consumer/</u>
- J. Alexander. "History of the Medical Use of Silver." Surgical Infections 2009, 289-292.
- Rai, M. and N. Duran. Metal Nanoparticles in Microbiology. 2011.
- "Antimicrobial Effects of Silver Nanoparticles". Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems. <u>https://nano-cemms.illinois.edu/media/content/teaching_mats/online/antimicrobial_silver/ docs/guide.pdf</u>
- "Antimicrobial Silver Nanoparticles." nanoComposix. <u>http://nanocomposix.com/technology/antimicrobial-silver-nanoparticles</u>
- Kosinski, R. "Using Yeast Fermentation to Suggest and Then Challenge a Model." Association for Biology Laboratory Education (ABLE) Proceedings 2010, Vol. 31: 162-186.
- Navarro. E, et al. "Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii." Environ. Sci. Technol. 2008, Vol. 42: 8959-8964.