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Executive Summary
This technical report stems from a three-year, NSF-funded effort (Grant #1838992) investigating the role that 
computational thinking plays as an input to and outcome of science learning. The growth of computers in all aspects 
of modern life has drawn increasing attention to how people should and do reason about computing. Because 
computational models and simulations play a ubiquitous role in many science disciplines, it is increasingly important 
to make use of them in science instruction. Accordingly, science education has shifted to more intentionally focus on 
computational thinking, and both the NRC Framework for K-12 Science Education and the Next Generation Science 
Standards (NGSS) for K-12 draw attention to computational thinking. 

To contribute to the effort to understand the role of computational thinking in science learning,  this project examined 
a new construct, computational thinking for science (CT-S).  Drawing from existing frameworks and definitions of 
computational thinking (CT) to define the aspects of CT that best position youth for learning of science specifically, we 
empirically examined hypothesized components of CT-S and iteratively developed a student assessment instrument 
for use in research and practice. The work builds on prior work of the Activation Lab and specifically investigates 
whether computational thinking for science (CT-S) positions youth from diverse backgrounds for success in science 
learning. 

This technical report details the conceptualization, development, and validity evidence of the computational thinking 
for science survey. In this report, we provide an operational definition of CT-S, describe the survey construction 
process, and provide validity evidence to support inferential claims from the survey about a middle school student’s 
computational thinking for science ability. 

The resulting multiple choice, 20-item scale asks students to reflectively use, evaluate, and design computational tools 
while engaging in science practices (data collection, data processing, modeling, and problem-solving) within two 
common science contexts: predator-prey systems and temperature sensors. In short, the final 20-item measure of 
CT-S had acceptable reliability, as well as good model fit to both a uni-dimensional confirmatory factor analysis, and a 
2 parameter logistic item response theory model. The items showed no meaningful difference in how they functioned 
across gender, BIPOC status, previous coding experience, or resources at home. Further, the correlation between the 
CT-S sum-score and the IRT person ability estimate was high, implying that the simple sum-score could be used as a 
proxy for a respondent’s CT-S ability estimate. This means the tool can be used easily as a measure of the impact of an 
intervention focused on computational thinking for science.
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Overview
Project Aims
This technical report stems from a three-year, NSF-funded effort (Grant #1838992) investigating the role that 
computational thinking plays as an input to and outcome of science learning. The growth of computers in all aspects 
of modern life has drawn increasing attention to how people should and do reason about computing, which has been 
called computational thinking (Wing, 2006). As computational tools are increasingly pervasive in all the sciences 
from archeology to zoology, supporting and often transforming the core science practices, especially the practices 
associated with modeling (Denning, 2017), scientists must have some basic understanding of computation in order 
to successfully use such tools (Grover & Pea, 2013). Because computational models and simulations play a ubiquitous 
role in many science disciplines, it is increasingly important to make use of them in science instruction. Accordingly, 
science education has shifted o more intentionally focus on computational thinking, and both the NRC Framework for 
K-12 Science Education (National Research Council, 2012) and the Next Generation Science Standards (NGSS; NGSS 
Lead States, 2013) for K-12 draw attention to computational thinking. As curricula increase their use of simulations 
for middle and high school science, students need some form of computational thinking to engage in their science 
coursework, but little is known about the extent to which it is explicitly or implicitly taught in science classrooms, and 
research to-date has neglected to explicitly and consistently define, operationalize, and assess this construct in a 
science context.

To contribute to the effort to understand the role of computational thinking in science learning,  this project examined 
a new construct, computational thinking for science (CT-S).  Drawing from existing frameworks and definitions of 
computational thinking (CT) to define the aspects of CT that best position youth for learning of science specifically, we 
empirically examined hypothesized components of CT-S and iteratively developed a student assessment instrument 
for use in research and practice. 

The work builds on prior work of the Activation Lab to develop and investigate Science Learning Activation (Dorph et 
al., 2016), or the malleable dispositions, practices, and skills that position young people for success in science learning. 
The larger study aims to investigate whether computational thinking for science (CT-S) positions youth from diverse 
backgrounds for success in science learning above and beyond the previously identified dimensions of science 
learning activation (science fascination, value of science, competency beliefs in science, and scientific sensemaking) 
that have been shown to enable success (e.g. choice to participate in optional science experiences, engagement and 
perceived success, and content learning) in science learning during the middle school years. 

The project asked following research questions:

• Across diverse environments and for diverse learners, does CT-S predict engagement and learning in science 
courses?

• Does CT-S predict science learning above and beyond scientific sensemaking?

• Does CT-S change during middle school years? Is there variation in this change based on whether CT-S is taught 
in science courses?

• What experiences predict changes in CT-S during late middle school years?At the end of 8th grade, does CT-S 
correlate with STEM/CS career interest?

This technical report details the conceptualization, development, and validity evidence of the computational thinking 
for science survey. In the subsequent sections, we provide an operational definition of CT-S, describe the survey 
construction process, and provide validity evidence to support inferential claims from the survey about a middle 
school student’s computational thinking for science ability.
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Measuring Computational Thinking for Science
Instrument Development
THE COMPUTATIONAL THINKING FOR SCIENCE (CT-S) FRAMEWORK DEVELOPMENT
The Computational Thinking for Science (CT-S) framework was developed through an iterative process combining 
literature reviews, expert panel discussions, and cognitive interviews with youth pulled from populations similar to 
those the study aimed to target. First, literature reviews were used to coalesce existing definitions of computational 
thinking in order to have a working definition on which the CT-S construct could be built. Part of this review process 
included synthesizing multiple frameworks for computational thinking—including frameworks specific to computational 
thinking in science (Bienkowski et al., 2015; College Board, 2019; Google for Education, 2019; K12CS, 2019). 

The output of the review of the existing computational thinking literature was then presented and discussed in 
a 2.5-day retreat with 11 experts in computer science, computational thinking, learning design, and the learning 
sciences. This retreat included David Webb (Associate Professor of Mathematics Education, University of Colorado 
Boulder School of Education) , Marie Bienkowski (Deputy Director, Academies of Math and Science), Debra Bernstein 
(Senior Researcher at TERC), Matthew Berland (Associate Professor of Design, Creative, and Informal Education in 
the Department of Curriculum and Instruction at UW–Madison and Affiliate Faculty in Information Studies, Computer 
Sciences, Educational Psychology, and Science/Technology Studies); Cynthia D’Angelo (Assistant Professor [CSTL 
Division Chair], College of Education, University of Illinois); Kemi Jona (Assistant Vice Chancellor for Digital Innovation 
and Enterprise Learning at Northeastern University); Leilah Lyons (Research Associate Professor, Department of 
Computer Science at University of Illinois Chicago); Tapan Parkih (Associate Professor, Department of Information 
Scientist at Cornell Tech); Jennifer Wang (Product Manager, Google); Michelle Wilkerson (Assistant Professor, UC 
Berkeley Graduate School of Education); and Marcelo Worsley (Assistant Professor in Computer Science and Learning 
Sciences, Northwestern University, McCormick School of Engineering). The expert panel discussions helped to refine 
and better define the CT-S framework. 

Using the CT-S framework (described below) as a conceptual model (Mislevy et al., 2003), we developed a series of 
open-ended questions designed to engage middle school students in CT-S. We then conducted cognitive interviews 
(Ericsson & Simon, 1993) with 72 students in grades 5 - 8 of diverse backgrounds and identities. Researchers presented 
the participating students with the CT-S questions, and asked the students to work through the questions aloud. 
Interviewers probed to clarify students’ thinking. Artifacts from these interviews (including interview audio recordings, 
interviewer notes, student work, and documented conversations about the interviews) were examined to identify 
patterns in student thinking that could be categorized as CT-S. These patterns were then analyzed to develop precise 
definitions of both computational thinking and computational thinking for science. This analysis also enabled us to 
refine other definitions for terms used in the CT-S framework.

Based on the iterative process described above, this project defines computational thinking as the cognitive processes 
involved in building or modifying a mental model of a computational tool’s functionality (Hurt et al., 2021). Computational 
Thinking for Science (CT-S) occurs when an individual engages in computational thinking for their science activity. 
Expounding on this definition, the Computational Thinking for Science (CT-S) framework is intended to identify—and 
delineate—the CT-S subconstructs that can be used to inform the design of instructional sequences and assessments 
that promote or measure CT-S learning, respectively.

The CT-S framework can be illustrated using a table containing twelve cells, created by the intersection of four rows 
and three columns. The rows of the CT-S framework represent four categories of science activity (data collection, 
data processing, modeling, and problem-solving) where computational tools are likely to be leveraged. The columns 
represent three interactions with computational tools (reflective use, design, and evaluation of computational tools) 
that give rise to the cognitive processes that depend upon computational thinking. Each cell within the CT-S framework, 
therefore, represents CT-S as the intersection of a science activity (row) with an interaction with a computational tool 
(column). That is, any time an individual engages in a science learning experience or conducts a scientific investigation 
that can be categorized by one, or more, of the cells in the CT-S framework, they are engaging in Computational 
Thinking for Science (CT-S). The rows and columns stem from a distillation of much of the extant literature offering 
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or describing CT or CT-S frameworks. For a more thorough explanation, as well as a description of the process that 
resulted in their identification and selection, see Hurt et al., 2021.
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INITIAL ITEM DEVELOPMENT
With our framework as a guide, we developed an initial item set through either (a) adapting and/or extending related 
scales in the literature (notably, Weintrop et al., 2016), or (b) creating them internally when we could not find extant 
items to align with the framework. Specifically, items were designed or revised to not require any computer coding 
knowledge or experience, were developmentally appropriate for middle school students, and did not require rare 
scientific content knowledge. Items were iteratively developed and refined through several steps. First, we conducted 
a series of cognitive interviews to develop the initial item set, followed by a pilot test with 5th, 6th, 7th, and 8th grade 
students. With the pilot test we also administered the scientific sensemaking measure and the computational thinking 
test for convergent validity of measurement.  We then solicited evaluative feedback from our expert panelists on the 
existing items and pilot data results. Based on the analyses and evaluations of the cognitive interviews, pilot data, 
and expert panelist feedback, items were created, dropped, or adjusted accordingly. We went through the item 
development process two full times. In the next few sections we describe this overall process in detail and describe 
insights on how to measure this construct. 

Figure 1. 
Computational Thinking for Science (CT-S) Framework
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1. Cognitive Interviews on CT-S

Overview. Cognitive interviews served multiple purposes. First, we investigated which scenarios offered the widest 
common content knowledge and assessed students’ understanding and interpretation of proposed items. Second, 
we explored systematic differences across subgroups (gender, race/ethnicity, etc.) in the interpretation of items. 
Lastly, we collected student feedback on item formatting and phrasing in order to simplify language and minimize 
areas of potential confusion or bias.

Sample. In total, across multiple rounds of cognitive interviews, we spoke with 72 students in grades 5-8. Students 
represented a range of prior backgrounds and experiences in coding. 

Procedures. Procedures followed those described by Ericsson & Simon (1993), wherein researchers sat with a 
respondent as they responded to items and asked the student to articulate the questions in their own words and 
explain why they chose their answer. The interview protocol included opportunities to talk through each survey item 
to help verify clarity and ensure that respondents interpreted the items/used targeted skills as developers intended. 
Through transcript analysis, researchers verified the clarity of the items, looked for examples of uniqueness of 
interpretation, identified discrepancies between items and response options, and looked for evidence of bias or 
sensitivity. This process allowed us to establish links between the cognitive process, the observed response, and the 
interpretation of that response for each of the items contributing to the dimensions (Leighton, 2004), and determine 
which subject scenarios offered a wide common content knowledge.

2. Initial Pilot of CT-S Instrument

Overview. The initial pilot analysis used a large sample of student responses to the item set to allow for examination 
of the item characteristics, specifically the quality of the item scales and the distribution of respondents’ abilities 
across the range of item difficulties.

Sample. Middle school students responded to one of three versions of the CT-S survey to minimize burden on 
respondents. The purpose of the initial pilot was to calculate item characteristics for an appropriate range of item 
levels, verify the overall scale psychometric characteristics, and examine correlations with measures of scientific 
sensemaking and computational thinking.

Procedures. Students’ responses to the CT-S measure enabled our team to assess the internal characteristics of the 
instrument. Specifically, we assessed the ordinal scale reliability (Zumbo et al., 2007) and unidimensionality of each 
of the item scales, the distribution of respondents across items, the distribution on the Wright map of items across 
the range of respondents, and differential item functioning by gender and ethnicity. To evaluate the dimensionality 
of the item sets, we performed confirmatory factor analyses using Mplus. Once the structure of the item set was 
understood, responses were assessed for moderate correlations with the scientific sensemaking and computational 
thinking test measures.

3. Insights from the Item Development Process

Overview. Across the cognitive interviews and initial pilot analyses, several key themes emerged that informed 
further item and instrument refinement.

Time. Early versions of many of our items required study participants to invest too much time in individual assessment 
tasks. Our study needed to engage study participants in multiple items within 15 minutes in order for us to have a 
measure for CT-S that we could use to differentiate scores between individuals. As such, a single item or task that 
took more than 3 minutes to complete was unfeasible for our study regardless of its depth of CT-S engagement. 

Construct Irrelevant Items. In cognitive interviews we paid special attention to whether or not students were engaged 
in the types of thinking described by the CT-S framework. We found that interviewees would often try to answer 
items by relying on other cognitive skills outside of CT-S. For example, some items involved references to specific 
numbers in data tables, so students would utilize a common test taking strategy and rule out any answers that 
referenced numbers that weren’t present in the referenced data table; at which point the students could guess the 
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answer with a higher likelihood of guessing correctly and without ever having to engage in CT-S. It became apparent 
that some of our items were better than others at eliciting the types of thinking we aimed to elicit. Items that were 
answerable without engagement with CT-S were deleted from our item bank.

Natural Language vs Programming Languages. While our instrument was designed to be programming language 
agnostic, we did see value in engaging study participants in tasks that required them to identify the correct directives 
to provide to the computational tool referenced in the items. Throughout the item development process, we tried to 
phrase computer directions such that they would not favor students who had programming knowledge in ways that 
were separate from CT-S abilities. Through this process, we found that using natural language (e.g., human-speak) was 
the best way to not privilege students with programming knowledge and subsequently dropped items that depended 
on more nuanced programming language syntax.

Item Interactions. For a number of logistical reasons, we developed the CT-S instrument for Qualtrics. Qualtrics allows 
for advanced, customized interactions if a developer knows how to use javascript. Prior to our initial pilot study, we 
developed new user interactive item formats (e.g., drag and drop) with the goal being to engage the students in 
more authentic CT-S tasks than what might be possible with multiple choice items. We found, however, that there 
was an additional cognitive and temporal burden placed on survey participants through these interactive tasks. More 
importantly, we identified that these additional burdens were construct irrelevant, and we subsequently decided 
to make our instrument entirely multiple choice. We do posit that for CT-S assessments done in class, a task-based 
assessment using tools with which a student is familiar, is an assessment method worth researching. 

Science Knowledge. Our CT-S instrument was developed to engage students in computational thinking while engaging 
in practices of science or utilizing science knowledge. However, the goal of this instrument was to measure CT for 
science, and not science knowledge per se. As such, we needed to situate our items within accessible science contexts 
and knowledge that would not preclude students without particular science knowledge from being successful. 
Cognitive interviews allowed us to identify items in which science knowledge was a major factor in success, and these 
problematic items were removed from our instrument. The two resulting science contexts–predator-prey systems 
and temperature sensors–were widely accessible across samples.

Relationship to Other Measures. Our CT-S instrument showed moderate correlations with both the scientific 
sensemaking scale (ρ=0.67) and the computational thinking test (ρ=0.59). These correlations are high enough to 
indicate that there is some overlap between CT-S and the practices needed for sensemaking in science and in general 
computational thinking. But the correlations are not so high as to think this instrument is measuring the same thing as 
these other constructs. This provides some evidence that CT-S is a separate construct from scientific sensemaking 
and general computational thinking.

Field Test
Using the items generated from the initial development phase, we instituted a multi-cohort short longitudinal study in 
middle schools. The details of the sampling and administration procedures are outlined below. It is also worth mentioning 
that the administration of the field test took place in the 2020-2021 school year that was mired in logistical challenges 
from the COVID-19 global pandemic. While we were still able to collect the data described below we also saw more 
missing responses than we would normally expect and had greater difficulty linking pre and post administrations than 
we anticipated, likely a result of variability in the administration across sites.

Instrument
Informed by the cognitive interviews and initial pilot, the Computational Thinking for Science (CT-S) scale is a 20-item 
multiple choice measure to engage students in computational thinking within common science contexts– predator-
prey systems and temperature sensors. To engage students in CT-S, items are designed to elicit cognitive processes 
(reflective use, design, and evaluation) around a computational tool while engaging in common science practices 
(data collection, data processing, modeling, and problem-solving). The scale was administered during science class 
as part of a youth survey that also contained several questions on students’ demographic backgrounds and prior 
experiences.
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Recruitment

Researchers identified 45 school districts, across 18 states, that implement Amplify Science Middle School, a curriculum 
that makes extensive use of simulations in the learning materials, which we hoped would elicit computational thinking 
among learners. From these district websites, 6th and 8th grade science teachers were identified and emailed 
a recruitment letter that explained the study, why they were being invited to participate, the incentive for their 
participation (a $200 gift card to use for their classrooms) and what their participation would include. To be eligible to 
participate, the teacher’s classes had to meet the following criteria:

• Use Amplify Science Curriculum (at least 3 lessons using Amplify Science Middle School during Jan - May 2021)

• Every student has access to computer

• Exclusively or primarily 6th and 8th grade students

Every teacher who agreed to participate and met the above criteria was consented into the study as a research 
partner. Their role, with our support, was to provide parent information letters for each of their science class students, 
gather student assent, and administer surveys. (Many teachers taught multiple science classes).

Description of the Sample
The sample for this technical evaluation consisted of every student participating in the larger Computational Thinking 
for Science (CT-S) study. A total of 1,107 students agreed to participate and completed at least part of the surveys 
discussed in this technical report; however, only a subset of these students completed the surveys sufficiently to 
be included in the analysis described below. Thus, our effective sample size was n = 817 based on students who had 
responded to at least 60% of the CT-S items in the post survey administration. All surveys were administered online by 
the classroom teacher. 

After completing the CT-S instrument, participants were asked to answer questions about their demographics (gender, 
race/ethnicity, prevalence of English spoken in the home, access to home resources), prior experiences (frequency 
of participation in science activities outside of the school environment, frequency of participation in computer and 
technology experiences, previous computer coding or programming experience), and career interests. 

The following tables (Tables 1 through 5) describe the full sample of students who assented to participate and 
completed at least part of the surveys. Table 1 identifies the effective sample that was used in the analysis based on 
the inclusion criteria described above (i.e., responded to at least 60% of CT-S items at post). We have included both 
descriptions in Table 1 to illustrate the recruited sample while also describing the effective sample to examine patterns 
in the missing data.

Description of Sample used for Analysis
While the full sample is approximately 35% larger than the effective sample, there is very little difference in the 
percentages within each subgroup. That is, the effective sample is representative of the full sample across the 
identified subgroups as depicted in Table 1.  

Student Gender. Our sample was split nearly equally between youth who identified as male (48.0%) and female 
(45.0%) with 2.7% either identifying as non-binary or self-described, and the remaining 4.2% preferring not to say. 
For differential item functioning analysis these responses were made binary by categorization as identifying with an 
under-represented group (female, non-binary) or not.

Student Grade. As the larger CT-S study is focused on the experiences of  6th and 8th graders, those were the two 
grades that were preferentially recruited for the study and therefore highly represented in the sample. (8th: 58.2%, 6th 
31.9%, 7th: 9.8%, 5th: 0.2%)

Student Ethnicity. Students were first asked to describe their racial/ethnic background using check-box style questions 
(i.e., more than one description could be selected). From this sample, the youth selected: White/Caucasian: 61.4%, 
Multiple: 18.4%, Hispanic/Latinx: 6.8%, Asian/East Asian/Asian American 4.6%, Black/African American: 3.5%, South 
Asian/Indian: 2.6%, and Other: 2.6%). For differential item functioning analysis these responses were made binary 
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Sample Characteristic
Full Sample Effective Sample

n % n %

Gender

    Male 382 48.3% 295 48.0%

    Female 346 43.7% 277 45.0%

    Prefer not to say 40 5.1% 26 4.2%

    Non-binary/Third Gender 15 1.9% 10 1.6%

    Prefer to self-describe 8 1.0% 7 1.1%

    Blank 316 202

Race/Ethnicity

    White/Caucasian 474 61.2% 371 61.4%

    Multiple 137 17.7% 111 18.4%

    Hispanic/Latinx 53 6.8% 41 6.8%

    Asian/East Asian/Asian American 33 4.3% 28 4.6%

    Black/African American 30 3.9% 21 3.5%

    South Asian/Indian 24 3.1% 16 2.6%

    Other 23 3.0% 16 2.6%

    Blank 333 213

Grade

    5th 2 0.3% 1 0.2%

    6th 234 29.7% 196 31.9%

    7th 77 9.8% 60 9.8%

    8th 476 60.3% 358 58.2%

    Blank 318 202

English Spoken at Home

    Always 706 88.9% 546 88.5%

    Sometimes 76 9.6% 60 9.7%

    Rarely 7 0.9% 7 1.1%

    Never 5 0.6% 4 0.6%

    Blank 313 200

Total 1107 817

by categorization as identifying with an under-represented group (Hispanic/Latinx, Black/African American, Native 
Hawaiian/Pacific Islander, Native American/Alaska Native, Middle Eastern/North African) or not.

English Spoken at Home. Students were asked to indicate the extent to which English was spoken at home. The majority 
of students (88.5%) indicated that they always spoke English at home. Only 0.6% of students indicated that they never 
spoke English at home.

Table 1. 
Sociodemographic Characteristics of Participants (Full Sample and Effective Sample) 
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Experiences in the Past 3 Months
Never Once

More Than 
Once

n % % %

Computer and Technology Experiences

    Was a part of a coding, computers, or robotics class  
        or program.

754 55.7% 24.1% 20.2%

    Played a video game. 754 8.0% 11.8% 80.2%

    Watched or read about how a computer works. 751 57.5% 25.0% 17.4%

    Used a computer for a science or coding project. 752 23.0% 24.6% 52.4%

    Taken a machine (like a motor, computer, toaster, 
        etc.) apart to see how it works

753 66.4% 17.4% 16.2%

    Built, set up, or connected a device (like internet 
        Wi-Fi, computer, etc.)

752 27.5% 27.4% 45.1%

    Made something with a microprocessor (like Arduino, 
        raspberry pi)

752 82.4% 10.9% 6.6%

    Made a computer game, story, animation, or website. 752 59.3% 23.3% 17.4%

    Taught someone else something about technology 750 31.7% 32.1% 36.6%

Out of School Science Experiences

    Participated in a science camp after school or online. 752 89.0% 7.3% 3.7%

    Played with science toys/objects/kits. 753 44.5% 33.2% 22.3%

    Did science experiments even when I was not at 
        school.

753 54.8% 27.1% 18.1%

    Read books about science. 752 61.7% 23.4% 14.9%

    Watched audio/video/TV programs about science. 753 43.0% 26.3% 30.7%

    Visited websites about science. 752 46.8% 22.6% 30.6%

    Taken care of a pet/animal/plant or garden. 752 11.7% 9.3% 79.0%

    Spent time in nature. 751 6.4% 12.5% 81.1%

Computer and Technology Experiences. Students were asked to rate the frequency in which they participate in various 
computer science and technology experiences. The highest percentage of “more than once” ratings were given to 
played a video game (80.2%), used a computer for a science or coding project (52.4%), built, set up, or connected 
a device (like internet wifi, computer, etc.) (45.1%), taught someone else something about technology (36.6%). The 
lowest percentage of “more than once” was observed for was a part of a coding, computers, or robotics class or 
program (20.2%), watched or read about how a computer works (17.4%), made a computer game, story, animation, 
or website (17.4%), taken a machine (like a motor, computer, toaster, etc.) apart (16.2%), and made something with a 
microprocessor (like arduino, raspberry pi) (6.6%).

Out of School Science Experiences. Students were asked to rate the frequency in which they participate 
in various out-of-school science experiences. The highest percentage of “more than once” ratings were 
given to spent time in nature (81.1%), taken care of a pet/animal/plant or garden (79.0%), watched audio/
video/TV programs about science (30.7%), visited websites about science (30.6%). The lowest percentage 
of “more than once” was observed for: did science experiments even when I was not at school (18.1%), 
read books about science (14.9%), and participated in a science camp after school or online (3.7%). 
 
Table 2.                                                                                                                                                                                                   s 
Computer and Technology & Out of School Science Experiences in the Past 3 Months
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Previous Computer Coding/Programming Experience. Students were asked to select all languages with which they 
had some level of experience having used. The selection choices were visual and represented the following coding 
and programming languages: Mark-up languages like HTML, block based languages like scratch, general purpose 
programming languages like Python/Java, and Dataflow languages such as LEGO mindstorms. Respondents could 
select more than one language. Most youth (79.6%) had experience with one or more languages, with Block as the 
most common language (61%) and  LEGO Mindstorms the least common (17%). For differential item functioning analysis 
these responses were made binary by categorization as having any previous programming experience or not.

Table 3. 
Programming Experience

Programming Experience
Yes No

n % n %

Language

    Block Language (e.g., Scratch!, MakeCode) 502 61.4% 315 38.6%

    HTML/CSS 250 30.7% 566 69.3%

    Typed Languages (e.g., Python, js, Java) 219 26.8% 598 73.2%

    LEGO® MINDSTORMS® 135 16.5% 682 83.5%

Total Number of Languages

    0 167 20.4%

    1 356 43.6%

    2 163 20.0%

    3 99 12.1%

    4+ 32 3.9%
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Home Resources. 74.7% of the effective sample selected that they Always have an internet connection; 74.4% Always 
have a computer; 70.0% Always have a study area; 63.2% Always have a calculator; 44.8% Always have a Dictionary; 
45.2% Always have an E-reader (ipad, kindle, nexus); 20.1% Always have books about science. For differential item 
functioning analysis these responses were made binary by categorization as the lowest 25% of a weighted resource 
access score, or in the upper 75% of that score distribution. This weighted resource access score was obtained by 
applying the following weights to the individual responses: Calculator:3, Computer:1, Internet:1, Dictionary:4, Study 
Area:2, E-reader:4, Books about Science:5. These weights were obtained from an IRT analysis of these responses, such 
that higher weights correspond to less accessible resources. These weights were multiplied by the following mapping 
of student responses: Never=0, Sometimes=1, Almost Always=2, Always=3.

Table 4. 
Home Resources

Home Resources
Never Sometimes

Almost 
Always

Always

n % % % %

Resource

    Calculator 612 1.5% 13.9% 21.4% 63.2%

    Computer 612 1.0% 3.8% 20.9% 74.4%

    Internet Connection 613 0.3% 2.9% 22.0% 74.7%

    Dictionary 610 11.0% 27.7% 16.6% 44.8%

    Study or Homework Area 609 1.6% 6.2% 22.2% 70.0%

    E-reader (Kindle, iPad, nexus) 608 19.1% 18.4% 17.3% 45.2%

    Books about Science 608 21.7% 36.5% 21.7% 20.1%
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Response Analysis Methodology
Two methods of investigating the psychometric properties of instruments used to measure social science 
phenomena are often used in the literature; confirmatory factor analysis (CFA) and Item Response Theory (IRT). While 
the relationship between CFA and IRT has been established, it is generally accepted that CFA is better at modeling 
indicators to underlying latent trait(s) while IRT is better at modeling the indicator to person relationship (Glockner-
Rist & Houtink, 2003; Takane & de Leeuw, 1987). Derived from classical test theory (CTT), CFA explores the relationship 
between observed indicators with the purpose of identifying underlying latent traits hypothesized to be responsible 
for these relationships (Brown, 2006). Typically performed within the framework of structural equation modeling 
(SEM), CFA is based on the fit between the observed covariance matrix and the covariance matrix from the proposed 
model (Kline, 2005; Hambleton & Swaminathan, 1985; Brown, 2006). Based on the underlying assumptions of SEM, a 
linear relationship between latent trait(s) and indicators is expected (Glockner-Rist & Houtink, 2003).

Historically, IRT has been used to evaluate latent skill and ability; however, the application of IRT to the measurement 
of affective latent traits is common (Osteen, 2010). IRT estimates a “logistic function” which models the probabilistic 
nonlinear relationship between the underlying latent trait and the item responses (Glockner-Rist & Houtink, 2003; 
Reise & Waller, 2009). This type of estimation allows the appropriateness of the proposed model to be determined at 
the item level as well as at the person level. Item fit statistics quantify how well the IRT model explains responses to 
each item while person fit statistics quantify if the overall response pattern by an individual is consistent (Embretson 
& Reise, 2000).

These differences in estimation approach and underlying assumptions give rise to inherent advantages for each 
methodology depending on the expected application. As applied to the development of measuring instruments, 
several points are relevant:

1. IRT allows for the estimation of item difficulties and person ability estimates independent of each other (Embretson 
& Reise, 2000). These estimates are confounded within the context of CFA (Osteen, 2010).

2. In CFA, the standard error of measurement is averaged across the sample and is sample dependent while in IRT, the 
standard error of measurement is assumed to vary across the sample and be sample independent (Embretson & 
Reise, 2000; Osteen, 2010). Within IRT, this allows the precision of measurement to be assessed at any point along 
the continuum of the underlying trait and the contribution of each item to the overall precision of the instrument 
to be assessed which aids in item selection (Hambleton & Swaminathan, 1985).

3. The item information function and test information function available through IRT estimation allows for the 
evaluation of individual item performance independent of other items on the instrument (Embretson & Reise, 
2000). This capability is not available in CFA since both item and test performance is dependent on the other items 
on the instrument (Osteen, 2010).

4. Item fit within CFA is determined by factor loadings, error variances, and communalities (Brown, 2006) while in IRT, 
item fit is evaluated through weighted and unweighted mean squared errors (Osteen, 2010).

5. CFA offers several different types of indices of overall model fit while IRT is limited to chi-square deviance statistics 
(Reise, Widaman, & Pugh, 1993).

6. CFA handles missing data by providing end-level individual factor scores through the use of full information 
likelihood estimation while missing data in an IRT analysis has been shown to cause problems with estimation of 
ability and item parameters when the underlying cause of the missing data cannot be determined (Mislevy & Wu, 
1996; Brown, 2006).

It was the contention of the project team working on the technical evaluation of the instruments used that using a 
combined approach would lead to the development of a stronger instrument (Glockner-Rist & Houtink, 2003), result 
in a better evaluation of the newly-designed instrument (Glockner-Rist & Houtink, 2003), and facilitate a stronger 
argument for the underlying theory. Therefore, a combined, iterative approach was taken in the technical evaluation 
of the Computational Thinking for Science instrument.
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Exploratory Factor Analysis
In preparation for the CFA and IRT analysis, an exploratory factor analysis (EFA) was conducted. While both EFA and CFA 
are derived from the common factor model, EFA differs from CFA with respect to the ultimate goal (Brown, 2006). The 
goal of EFA is to determine the smallest number of latent factors that can reasonably explain the correlations among 
the observed variables (Fabrigar et al., 1999). Given this goal, EFA places no a priori expectations on the number of 
latent factors present or the expected relationships between the observed measures and these latent factors (Brown, 
2006). Basically, this means that items are free to load on more than one factor, if present, and each item is evaluated 
based on the size and magnitude of the factor loadings (Fabrigar et al., 1999; Brown, 2006).

The decision to begin the analysis with an EFA was based on several factors. First, while CT-S was theorized to be 
unidimensional, the CT-S construct itself has twelve subconstructs (4 rows and 3 columns) from a subset of which the 
items were designed. Therefore, EFA was the logical first step in determining if the final set of items would conform 
to a simple structure required to estimate interpretable dimension scores, regardless of methodology. Second, the 
instrument contained a large number of items that would make specifying and systematically testing the required 
number of CFA models prohibitive (Fabrigar et al., 1999). Therefore, the results from the EFA were used to confirm the 
dimensional structure of the instrument, identify the sub-factors that were most closely aligned with the underlying 
theorized dimensions and thus, the items best suited to be used for scores on each dimension, and identify items with 
significant and substantial factor loadings on more than one factor, if any.

EFAs were performed in R using the nFactors package (Raiche & Magis, 2020) using maximum likelihood estimation 
with varimax rotation, and returning Thompson’s factor scores. We used three methods to estimate the optimal 
number of dimensions in our dataset: Acceleration Factor, Optimal Coordinates, and Parallel Analysis (Raiche, Riopel, 
& Blais, 2006; Humphreys & Montanelli., 1975)--noting that the Acceleration Factor method tends to under-estimate 
the number of dimensions, while the other two methods perform well in simulation studies (Ruscio & Roche, 2012).

Confirmatory Factor Analysis 
Unlike EFA, CFA does include a priori assumptions about the number of underlying factors and the correlations 
between the observed measures and the underlying latent factors (Brown, 2006). In CFA, the number of factors must 
be specified along with which items will be associated with which factor(s). However, to simplify interpretation of final 
scores, items should be associated with only one factor.

Based on the results of the EFA, different models for CT-S were designed and tested. The CFAs were performed for 
one, two, and three dimensional models in R (R Core Team, 2021) using the lavaan package (Rosseel, 2012), employing 
the WLSMV estimator. Results from these CFAs allowed for comparison of the relative fit indices of the different 
models. Model fit statistics were examined to determine the appropriateness of the specified models. The model fit 
statistics were compared to recommendations made by Hu and Bentler (1998, 1999; Yu, 2002) for final determination 
of the appropriateness of the scale.

Item Response Theory
The IRT analysis was performed in R (R Core Team, 2021) using the mirt package’s default settings (Chalmers, 2012). 
Model fit was examined under the 2-parameter logistic (2PL) model. Correlation between the resulting ability estimates 
and a simple sum-score was calculated. In addition, item characteristic curves (ICCs), item information curves, and 
total test information curves were examined to evaluate precision of measurement within an item and across the 
continuum of the ability.

Measurement Invariance Analysis
The CT-S scale was administered using slightly different versions of the same items at Pre and Post test to reduce 
the likelihood of a practice/retest effect artificially inflating scores at post (Zhou & Cao, 2020). Thus, measurement 
invariance was important to check, to see how much these item differences made a difference in estimating the CT-S 
score.

The measurement invariance analysis was conducted in R (R Core Team, 2021) using the default settings for the 
compareFit function from the semTools package (Jorgensen et al., 2021). We first checked for metric invariance, and 
then checked for scalar invariance in cases where metric invariance was observed.
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Differential Item Functioning Analysis
It has been noted that items can be asked in such a way as to disadvantage a subgroup within the sample from 
scoring as highly as expected (Camilli & Shepherd, 1994). This method of detecting item bias was developed within 
the context of educational testing (Camilli & Shepherd, 1994) as it is preferable that no items be operating differentially 
across settings or demographic groups for purposes of the project aims. Given that gender and racial representation 
in science is an issue, there was concern that any of the items used could function differently across demographic 
groups. Performing a differential item functioning (DIF) analysis would flag items as potentially displaying DIF for further 
examination.

The DIF analysis was performed in R (R Core Team, 2021) using the Mantel-Haenszel DIF method (difMH) from the difR 
library (Magis et al., 2010), with default parameters. The procedure is based on the premise that since the value of the 
trace line at any given proficiency level is the conditional probability of a correct response given that ability level, a DIF 
analysis can be done by calculating the probability that the trace lines are different between groups (Lord, 1980; Thissen 
et al., 1993). Toward this end, a general test of joint difference test (with a correction) using both item discrimination 
and item difficulty parameters is performed in which the parameter estimates are compared to an augmented model 
(Thissen et al., 1993). Using this method, testing the item difficulty parameter for significance is done by constraining 
the slopes to be equal in the model specifications (Thissen et al., 1993; Cai et al., 2011). DIF analyses were performed 
for the following variables: gender (male/other), ethnicity (under-represented / over-represented), resource-access 
(bottom quartile/higher), and prior-programming experience (yes/no).

Results
Dimensionality
EFA. We explored the optimal number of dimensions, noting that the Acceleration Factor method suggested one 
dimension, while the Optimal Coordinates and Parallel Analysis methods both suggested three dimensions (see the 
Scree plot, Figure 2). Thus, we continue to explore models of up to three dimensions. Our results were consistent with 
a unidimensional structure for items, with a single factor explaining 17% of the variance in responses. Adding a second 
factor marginally increased the variance explained to 20%, and a third factor explained up to 22% of the variance.

CFA. Results for the items outlined above exhibited good fit with all three of the model dimensionalities tested. The 
unidimensional model necessarily assigned all items to a single factor. The two-factor model assigned items to a 
factor associated with each of the question contexts: predator prey or temperature sensors. The three-factor model 
assigned items to the Cognitive Processes (columns from Figure 1) used when answering the question. Each of these 
models showed good fit to the data (CFI > 0.9, RMSEA < 0.05, and SRMR < 0.05). While each of the three models fits the 
data well, our theory suggests a unidimensional construct and an instrument that measures a unified construct better 
meets our study needs, we continue by exploring a unidimensional model (CFI = 0.976, RMSEA = 0.028, SRMR = 0.039).

Table 5. 
Fit Metrics for Different CFA Models 

Fit Measures CFI RMSEA SRMR

CFA Model

    1-factor 0.976 0.028 0.039

    2-factor 0.989 0.019 0.035

    3-factor 0.975 0.029 0.039
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Reliability
The 20 items showed acceptable reliability using Cronbach’s alpha (α = 0.77) as well as McDonald’s omega (ω = 0.76).

IRT Model Fit
Inspecting a 2PL model (Table 6), we see that the item discrimination values are all positive, ranging from 0.2 to 2.4. 
The 2PL model fits well: CFI = 0.956, RMSEA = 0.037, SRMR = 0.044. Attempts to use a Rasch model fitted poorly (CFI = 
0.814, RMSEA = 0.072, SRMR = 0.095), due to the items with discrimination values far from unity, so subsequent analysis 
proceeded with the 2PL model. Constructing a Wright Map (Figure 3) allows us to easily see that student ability on the 
latent trait of CT-S. The distribution of ability estimates has a longer tail at the higher levels of CT-S ability than it does at 
the lower end. Item difficulties ranged from -1 to 1.7 (plus two items whose difficulties were outliers around 4). Our item 
difficulties were most concentrated in the upper portion of the main ability-score distribution, indicating that our items 
allow us to differentiate effectively between students with moderate levels of the CT-S trait. However, we do not have 
many items at the lower end of the distribution, indicating that we are not able to differentiate as effectively between 
students with the lowest CT-S ability scores. The two most difficult items, TS08a and TS08b, were rarely answered 
correctly in our sample, but even though these items were too hard for the students in our sample, these items could 
help differentiate between students with more exposure to or practice with the skills of CT-S. We include the trace 
lines for each of our items in Figure 4.

Measurement Invariance
Results showed that the scale was not measurement invariant (Δꭓ2 = 36.2, p = 0.01) across administrations (Pre vs 
Post). In order to isolate the source of this variance, we reran the measurement invariance analysis for each of the two 
item contexts (Temperature Sensors and Predator Prey) individually. We found that while the Temperature Sensor 
items did show evidence of being measurement invariant (Δꭓ2 = 13.8, p = 0.09), the Predator Prey items did not (Δꭓ2 = 
29.9, p = 8.7e-4).

Differential Item Functioning
Results of the DIF analysis found no evidence of significant differential item functioning across the student range of 
resource access or prior programming experience. However, one item (TS01) showed moderate differential item 
functioning across race/ethnicity (p=0.007, ΔMH = -1.35), and also “negligible” (but statistically significant) DIF across 
gender (p=0.023, ΔMH = -0.94). On this item (TS01) students from under-represented minority groups were slightly 
more likely to select the incorrect responses “Line 1” and “Line 2” over the correct response (“Line 3”). Neither of 
these distractors seem to be culturally confounded. No clear difference in response selection was apparent between 
gender groups. We report the effect sizes (ΔMH) for all items across these categories in Table 7. We note that all but 
two of the absolute values are below the threshold of 1, indicating that they all exhibit “negligible” differential item 
functioning across each of the categories analyzed (for reference, absolute values below 1 are “negligible,” values 
between 1 and 1.5 are “moderate,” and values above 1.5 are “large”). 

Summary
This technical report summarized the conceptualization, development, and testing of a survey scale to measure 
computational thinking for science. The resulting multiple choice, 20-item scale asks students to reflectively use, 
evaluate, and design computational tools while engaging in science practices (data collection, data processing, 
modeling, and problem-solving) within two common science contexts: predator-prey systems and temperature 
sensors. In short, the final 20-item measure of CT-S had acceptable reliability (α = .77), as well as good model fit to 
both a uni-dimensional confirmatory factor analysis (CFI = 0.976, RMSEA = 0.028, SRMR = 0.039), and a 2 parameter 
logistic item response theory model (CFI = 0.956, RMSEA = 0.037, SRMR = 0.044). With only one exception, the items 
showed no meaningful difference in how they functioned across gender, BIPOC status, previous coding experience, 
or resources at home. The survey showed moderate correlation with measures of scientific sensemaking, indicating 
some overlap in the constructs but unique characteristics needed for computational thinking for science. Further, 
the correlation between the CT-S sum-score and the IRT person ability estimate was high (ρ = 0.96), implying that the 
simple sum-score could be used as a proxy for a respondent’s CT-S ability estimate. This means the tool can be used 
easily as a measure of the impact of an intervention focused on computational thinking for science.
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Appendix A - Final Set of Items
Predator Prey Context

PP01a and PP01b
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PP02

PP03
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PP04

PP05
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PP06

PP07a and PP07b
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PP08
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Temperature Sensor Context

TS011 

1 Items TS01, TS02, and TS04 are based on assessment items created by Uri Wilensky and Mike Horn’s CT-STEM Project 

 (https://ct-stem.northwestern.edu/). 
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TS03

TS02
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TS04

TS05
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TS06
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TS07
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TS08a and TS08b



Copyright © 2022 by the Regents of the University of CaliforniaThe Lawrence Hall of Science32

Technical Report: Measuring Computational Thinking For Science (CT-S)

Appendix B - Scoring Rubrics
Predator-Prey Items

Item Text Scoring

PP01a

Determine if each computer direction below would 
correctly or incorrectly model the behavior of 
Prey_A.

A: If Prey_A sees Sharp-Tooth Predator, then it runs 
away. 

B: If Prey_A sees Sharp-Tooth Predator, then it stays 
still. 

1 = Marking A “Incorrect” and B “Correct”

0 = In all other cases

PP01b

Determine if each computer direction below 
would correctly or incorrectly model the 
behavior of Prey_A.

A: If Prey_A sees Good-Eye Predator, then it 
runs  away. 

B: If Prey_A sees Good-Eye Predator, then it 
stays still.

1 = Marking A “Incorrect” and B “Correct”

0 = In all other cases

PP02

The scientist created computer directions for 
Prey_B and tested the simulation. Prey_B ran 
away. If the simulation worked correctly, which 
of the following must have happened to cause 
Prey_B to run away?

0 = Prey_B saw Sharp-Tooth Predator. 

1 = Prey_B saw Good-Eye Predator. 

0 = Prey_B saw either Sharp Tooth Predator or 
        Good-Eye Predator. 

0 = Prey_B saw no predators.

PP03

The scientist created computer directions for 
Prey_C and tested the simulation. The following 
happened:  

Prey_C saw Sharp-Tooth Predator and stayed 
still.

Prey_C saw Good-Eye Predator and stayed still. 

Does the scientist need to change anything in 
their computer instructions?

0 = No, their directions correctly model the 
        environment 

0 = Yes, they need to change their directions 
        about the Sharp-Tooth Predator 

0 = Yes, they need to change their directions 
        about the Good-Eye Predator 

1 = Yes, they need to change their directions 
        about both Sharp-Tooth Predator and 
        Good-Eye Predator.

PP04

The scientist created computer directions 
for a new mystery prey called “Prey_X” and 
tested the simulation. Prey_X saw Sharp-Tooth 
Predator but stayed still. Next, Prey_X saw the 
Good-Eye Predator and stayed still. Which of 
the following statements must be true about 
Prey_X if the simulation worked correctly?

0 = Prey_X is dark-colored AND has no shell. 

0 = Prey_X is light-colored AND has no shell. 

1 = Prey_X is light-colored AND has a shell. 

0 = Prey_X is dark-colored AND has a shell.
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Item Text Scoring

PP05
Which computer direction(s) could be used in 
the simulation for Prey_D?

1 = If Prey_D sees Sharp-Tooth Predator, then it 
        runs away 
      If Prey_D sees Good-Eye Predator, then it 
        stays still  

0 = If Prey_D sees Sharp-Tooth Predator, then it 
          stays still 
       If Prey_D sees Good-Eye Predator, then it 
         runs away  

0 = If Prey_D sees either predator, then it runs 
         away  

0 = If Prey_D sees either predator, then it stays 
         still

PP06

The scientist created computer directions for 
all of the prey and tested the simulation. All of 
the prey except Prey_A ran away. Which of the 
following would have caused this to occur?

0 = All of the prey saw Sharp-Tooth Predator 

0 = All of the prey saw Good-Eye Predator 

1 = All of the prey saw both Good-Eye Predator  
        and Sharp-Tooth Predator 

0 = All of the prey saw neither predators

PP07a

The scientist creates four computer directions 
for the simulation:

    If a light-colored prey sees Sharp-Tooth 
Predator, then it stays still. 
    If a light-colored prey sees Good-Eye, then it 
runs away. 
    If a dark-colored prey sees Sharp-Tooth 
Predator, then it runs away. 
    If a dark-colored prey sees Good-Eye 
Predator, then it stays still.    

The scientist wonders if the directions 
accurately model the prey and predators in the 
real environment.

Determine if each statement would be true in: 
ONLY the real environment, ONLY the simulation, 
BOTH the real environment and the simulation, 
or NEITHER the real environment nor the 
simulation.

Prey_B stays still when it sees Sharp-Tooth 
Predator.

0 = ONLY Real Environment

0 = ONLY Simulation

1 = BOTH

0 = NEITHER
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Item Text Scoring

PP07b

The scientist creates four computer directions 
for the simulation:

    If a light-colored prey sees Sharp-Tooth 
Predator, then it stays still. 
    If a light-colored prey sees Good-Eye, then it 
runs away. 
    If a dark-colored prey sees Sharp-Tooth 
Predator, then it runs away. 
    If a dark-colored prey sees Good-Eye 
Predator, then it stays still.    

The scientist wonders if the directions 
accurately model the prey and predators in the 
real environment.

Determine if each statement would be true in: 
ONLY the real environment, ONLY the simulation, 
BOTH the real environment and the simulation, 
or NEITHER the real environment nor the 
simulation.

Prey_D runs away when it sees Sharp-Tooth 
Predator.

0 = ONLY Real Environment

0 = ONLY Simulation

1 = BOTH

0 = NEITHER

PP08

The scientist wrote a new computer directions 
below to model predators’ reactions to different 
prey.  

    If Sharp-Tooth Predator sees a dark-colored 
prey, it runs toward that prey; else it stays still.

    If Good-Eye Predator sees a prey without a 
shell, it runs toward that prey; else it stays still.  

The scientist tests the simulation. Both 
predators saw the same prey and both 
predators ran toward that prey. 

Which prey did both predators see?

0 = Prey_A  

0 = Prey_B  

1 = Prey_C  

0 = Prey_D  
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Item Text Scoring

PP09

The scientist wrote a new computer directions 
below to model predators’ reactions to different 
prey.  

    If Sharp-Tooth Predator sees a dark-colored 
prey, it runs toward that prey; else it stays still.

    If Good-Eye Predator sees a prey without a 
shell, it runs toward that prey; else it stays still.

The scientist wonders if the two directions 
above will work for every prey that each 
predator could see. The scientist does not have 
time to test every combination of prey and 
predators. 

Which of the following plans would provide 
evidence that each predator runs when it 
should and stays still when it should?

0 = Have each predator see 

          Prey_A and Prey_B  

0 = Have each predator see 

          Prey_B and Prey_C  

1 = Have each predator see 

          Prey_B and Prey_D  

0 = Have each predator see 

          Prey_C and Prey_D  
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Item Text Scoring

TS01
A computer is connected to the sensors. Which 
Line in the following computer directions gets the 
temperature from Sensor 2?

0 = Line 1

0 = Line 2

1 = Line 3

0 = Line 4

0 = Line 5

TS02
Which data table could have come from these 
computer directions?

0 = Table 1

0 = Table 2

1 = Table 3

0 = Table 4

TS03

The data above was collected based on the 
computer directions. The scientist could not 
figure out which liquid reached 45˚C first. Which 
line should the scientist change if they want 
to get data that can help them answer their 
question?

0 = Line 1

0 = Line 2

0 = Line 3

0 = Line 4

1 = Line 5

TS04

The scientist wants to make the experiment 
longer so that they can see which liquid would 
reach 75˚C first. All of the changes below will 
make the experiment last 200 seconds. Which 
of these changes will give the scientist the most 
rows of data?

0 = Change Line 1 to: “Repeat 10”  

0 = Change Line 1 to: “Repeat 20” and change 
        Line 5 to: “Wait 10 seconds”  

1 = Change Line 1 to: “Repeat 40” and change 
        Line 5 to: “Wait 5 seconds”  

0 = Change Line 5 to: “Wait 40 seconds”  

TS05

The scientist finished a different experiment 
and gave the computer new directions to make 
the data table below. The scientist noticed 
something strange in the data table. What is the 
most likely explanation for the data highlighted 
in yellow?

0 = After 40 seconds, the computer changed 
        the directions to only collect temperature 
        measurements from Sensor 1 and Sensor 3.  

0 = The scientist forgot to put Sensor 2 in the 
        liquid before the experiment started.  

1 = Sensor 2 was disconnected from the 
        computer during the experiment 

0 = The computer deleted some of the data for 
        Sensor 2 after the experiment ended. 

TS06

The scientist noticed in the graph that some 
of the liquids were heated before the start of 
Experiment 1. The scientist wants to change the 
filter below to remove this data only. Which of 
the following changes will do this? 

0 = In Line 1, change 0º to 55º 

1 = In Line 2, change 100º to 35º

0 = In Line 3, change 0º to 35º

0 = In Line 4, change 100º to 55º

Temperature Sensor Items
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Item Text Scoring

TS07

The scientist noticed in the graph that some of 
the liquids cooled down during Experiment 1. 
The scientist wants to change the filter below 
to remove this data only. Which of the following 
changes will do this?

0 = In Line 1, change 0º to 35º  

0 = In Line 2, change 100º to 35º   

1 = In Line 3, change 0º to Starting Temperature

0 = In Line 4, change 100º to Starting 
        Temperature

TS08a

The scientist has Graph A and wants to create 
Graph B using a filter. Complete the computer 
directions below to make that filter:

Remove Data where Starting Temperature less 
than:

0 = Starting Temperature

1 = Final Temperature

0 = 15º

0 = 75º

TS08b

The scientist has Graph A and wants to create 
Graph B using a filter. Complete the computer 
directions below to make that filter:

Remove Data where Final Temperature less 
than:

0 = Starting Temperature

0 = Final Temperature

1 = 15º

0 = 75º
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Appendix C - Item-Construct Alignment

Problem-
Solving

Modeling

Data
Processing

Sc
ie

nc
e 

Ac
tiv

ity

Data
Collection

of a computational tool for

Cognitive Processes

Design EvaluationReflective
Use

CT-S

PP01a, PP01b, PP05PP02, PP03, PP04, 
PP06, PP08

PP07a, PP07b

PP09, TS01, TS02, 
TS05

TS03, TS04

TS06, TS07, TS08a, 
TS08b
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Appendix D - Supplementary Tables and Figures
Table 6. 
IRT 2PL Model Item Parameters

IRT 2PL 
Model Item 
Parameters

Discrimination Difficulty

a1 d

Item

    PP01a 1.12 0.02

    PP01b 1.11 -0.44

    PP02 2.34 -0.20

    PP03 1.51 0.16

    PP04 2.39 -0.22

    PP05 1.87 -0.38

    PP06 1.57 -0.28

    PP07a 1.34 0.18

    PP07b 0.99 0.71

    PP08 1.69 -0.48

    PP09 0.77 1.50

    TS01 0.86 -0.92

    TS02 0.51 1.57

    TS03 1.07 0.88

    TS04 0.40 1.66

    TS05 0.48 1.49

    TS06 0.46 0.48

    TS07 0.46 0.51

    TS08a 0.22 4.10

    TS08b 0.23 3.75
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Mantel-Haenszel 
DIF effect sizes

Gender Race/Ethnicity Resource Access
Prior Programming 

Experience

MH MH MH MH

Item

    PP01a 0.48 0.35 -0.60 -0.36

    PP01b 0.38 0.78 0.28 -0.22

    PP02 0.27 0.30 0.05 0.35

    PP03 -0.21 -0.02 -0.08 0.38

    PP04 -0.11 0.04 -0.30 0.04

    PP05 0.28 0.19 -0.50 0.28

    PP06 0.29 1.05 0.11 -0.16

    PP07a 0.07 0.04 0.08 -0.42

    PP07b 0.14 0.74 -0.65 0.11

    PP08 0.37 -0.61 0.25 0.21

    PP09 -0.23 -0.42 -0.13 0.30

    TS01 -0.94 -1.35 -0.18 0.37

    TS02 -0.81 0.32 0.86 0.31

    TS03 0.33 -0.60 -0.16 -0.27

    TS04 -0.08 -0.95 -0.55 -0.44

    TS05 -0.51 -0.77 0.18 -0.64

    TS06 -0.34 -0.14 0.80 0.23

    TS07 0.48 -0.26 0.17 0.14

    TS08a -0.29 0.87 0.51 0.60

    TS08b 0.12 -0.55 -0.54 -0.26

Table 7. 
Mantel-Haenszel DIF effect sizes
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Figure 2. 
Non-Graphical Solutions to Scree Test

Scree plot showing the eigenvalues of the data, obtained through the exploratory factor analysis. Also represented 
are the number of suggested components to retain from various methods, including the acceleration factor method 
(n=1), optimal coordinates method (n=3), and parallel analysis method (n=3).
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Figure 3. 
IRT Wright Map.

Left figure shows a histogram representing the distribution of student CT-S latent ability scores obtained from the 
IRT analysis, with higher CT-S students towards the top of the distribution. Right side labels show the item difficulty 
distribution for the 20 scored item responses, with more difficult items higher up.
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Figure 4. 
Item trace lines

Trace lines for the 20 scored item responses. Lines indicate the probability that a student will be able to answer the 
item correctly as a function of their CT-S latent ability score (θ).


